Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity.
نویسندگان
چکیده
Recent investigations of possible downhill folding of small proteins such as BBL have focused on the thermodynamics of non-two-state, "barrierless" folding/denaturation transitions. Downhill folding is noncooperative and thermodynamically "one-state," a phenomenon underpinned by a unimodal conformational distribution over chain properties such as enthalpy, hydrophobic exposure, and conformational dimension. In contrast, corresponding distributions for cooperative two-state folding are bimodal with well-separated population peaks. Using simplified atomic modeling of a three-helix bundle-in a scheme that accounts for hydrophobic interactions and hydrogen bonding-and coarse-grained C(alpha) models of four real proteins with various degrees of cooperativity, we evaluate the effectiveness of several observables at defining the underlying distribution. Bimodal distributions generally lead to sharper transitions, with a higher heat capacity peak at the transition midpoint, compared with unimodal distributions. However, the observation of a sigmoidal transition is not a reliable criterion for two-state behavior, and the heat capacity baselines, used to determine the van't Hoff and calorimetric enthalpies of the transition, can introduce ambiguity. Interestingly we find that, if the distribution of the single-molecule radius of gyration were available, it would permit discrimination between unimodal and bimodal underlying distributions. We investigate kinetic implications of thermodynamic noncooperativity using Langevin dynamics. Despite substantial chevron rollovers, the relaxation of the models considered is essentially single-exponential over an extended range of native stabilities. Consistent with experiments, significant deviations from single-exponential behavior occur only under strongly folding conditions.
منابع مشابه
Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملProbing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.
Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooper...
متن کاملEffects of desolvation barriers and sidechains on local-nonlocal coupling and chevron behaviors in coarse-grained models of protein folding.
Local-nonlocal coupling is an organizational principle in protein folding. It envisions a cooperative energetic interplay between local conformational preferences and favorable nonlocal contacts. Previous theoretical studies by our group showed that two classes of native-centric coarse-grained models can capture the experimentally observed high degrees of protein folding cooperativity and diver...
متن کاملTowards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?
To what extent do general features of folding/unfolding kinetics of small globular proteins follow from their thermodynamic properties? To address this question, we investigate a new simplified protein chain model that embodies a cooperative interplay between local conformational preferences and hydrophobic burial. The present four-helix-bundle 55mer model exhibits protein-like calorimetric two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 65 2 شماره
صفحات -
تاریخ انتشار 2006